Home Civil

Menu
  • Home
  • Engineering
  • Architectures
  • eBooks
  • Videos
  • Other

WordPress theme which is Adsense ready & detects Ad Blockers!

Facebook Page
Home
Engineering
Bearing Capacity of Soil
Engineering

Bearing Capacity of Soil

Homecivil May 28, 2022

Bearing Capacity of Soil: In geotechnical engineering, bearing capacity is the capacity of soil to support the loads applied to the ground. The bearing capacity of soil is the maximum average contact pressure between the foundation and the soil which should not produce shear failure in the soil.

Bearing Capacity of Soil

bearing capacity of soil
bearing capacity of soil

Ultimate bearing capacity is the theoretical maximum pressure which can be supported without failure; allowable bearing capacity is the ultimate bearing capacity divided by a factor of safety. Sometimes, on soft soil sites, large settlements may occur under loaded foundations without actual shear failure occurring; in such cases, the allowable bearing capacity is based on the maximum allowable settlement.

There are three modes of failure that limit bearing capacity: general shear failure, local shear failure, and punching shear failure. It depends upon the shear strength of soil as well as shape, size, depth and type of foundation.

Introduction Foundations

A foundation is the part of a structure which transmits the weight of the structure to the ground. All structures constructed on land are supported on foundations. A foundation is a connecting link between the structure proper and the ground which supports it. The bearing strength characteristics of foundation soil are major design criterion for civil engineering structures. In nontechnical engineering, bearing capacity is the capacity of soil to support the loads applied to the ground. The bearing capacity of soil is the maximum average contact pressure between the foundation and the soil which should not produce shear failure in the soil. Ultimate bearing capacity is the theoretical maximum pressure which can be supported without failure; allowable bearing capacity is the ultimate bearing capacity divided by a factor of safety. Sometimes, on soft soil sites, large settlements may occur under loaded foundations without actual shear failure occurring; in such cases, the allowable bearing capacity is based on the maximum allowable settlement.

General bearing failure

general bearing failure occurs when the load on the footing causes large movement of the soil on a shear failure surface which extends away from the footing and up to the soil surface. Calculation of the capacity of the footing in general bearing is based on the size of the footing and the soil properties. The basic method was developed by Terzaghi, with modifications and additional factors by Meyerhof and Vesić. . The general shear failure case is the one normally analyzed. Prevention against other failure modes is accounted for implicitly in settlement calculations.[2] Stress distribution in elastic soils under foundations was found in a closed form by Ludwig Föppl (1941) and Gerhard Schubert (1942).[3] There are many different methods for computing when this failure will occur.

Terzaghi’s Bearing Capacity Theory

Karl von Terzaghi was the first to present a comprehensive theory for the evaluation of the ultimate bearing capacity of rough shallow foundations. This theory states that a foundation is shallow if its depth is less than or equal to its width.[4] Later investigations, however, have suggested that foundations with a depth, measured from the ground surface, equal to 3 to 4 times their width may be defined as shallow foundations.

Terzaghi developed a method for determining bearing capacity for the general shear failure case in 1943. The equations, which take into account soil cohesion, soil friction, embedment, surcharge, and self-weight, are given below.

For square foundations:

Terzaghi's Bearing Capacity Theory
Terzaghi's Bearing Capacity Theory

For foundations that exhibit the local shear failure mode in soils, Terzaghi suggested the following modifications to the previous equations. The equations are given below.

For square foundations:

For square foundations:

respectively) by replacing the effective internal angle of friction

respectively) by replacing the effective internal angle of friction

Meyerhof’s Bearing Capacity theory

In 1951, Meyerhof published a bearing capacity theory which could be applied to rough shallow and deep foundations.[6] Meyerhof (1951, 1963) proposed a bearing-capacity equation similar to that of Terzaghi’s but included a shape factor s-q with the depth term Nq. He also included depth factors and inclination factors.

Factor of safety

Calculating the gross allowable-load bearing capacity of shallow foundations requires the application of a factor of safety (FS) to the gross ultimate bearing capacity, or;

respectively) by replacing the effective internal angle of friction
Share
Tweet
Email
Prev Article
Next Article

Related Articles

Flexible Air Duct Pressure Drop Calculation
Flexible Air Duct Pressure Drop Calculation. We use flexible air …

Flexible Air Duct Pressure Drop Calculation

Well, how’d you become king, then? Well, Mercia’s a temperate …

18 Animals With Ridiculously Misleading Names. Where Did They Come Up With These?

About The Author

Homecivil

Leave a Reply

Cancel reply

  • Popular
  • Recent

Home Civil

About Us

Mattis ac condimentum sed, iaculis et dui. Integer non lectus luctus, sodales nulla in, blandit dolor.

Nullam quis dolor sed nisi sollicitudin vehicula ac sed magna. Praesent tincidunt facilisis nisl, sit amet suscipit tellus congue nec.

Archives

  • June 2022
  • May 2022
  • April 2022
  • September 2016
  • April 2016
  • March 2016
  • March 2014
Copyright © 2022 Home Civil
Theme by Homecivil.com

Ad Blocker Detected

Our website is made possible by displaying online advertisements to our visitors. Please consider supporting us by disabling your ad blocker.

Refresh